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Abstract
We use a non-local interfacial Hamiltonian to revisit a number of problems associated with the
fluctuation theory of critical wetting transitions in three-dimensional systems with short-ranged
forces. These centre around previous renormalization group predictions of strongly
non-universal critical singularities and also possible fluctuation-induced first-order
(stiffness-instability) behaviour, based on local interfacial models, which are not supported by
extensive Monte Carlo simulations of wetting in the three-dimensional Ising model.
Non-locality gives rise to long-ranged two-body interfacial interactions controlling the
repulsion from the wall not modelled correctly in previous interfacial descriptions. In particular,
correlation functions are characterized by two diverging parallel correlation lengths, ξ‖ and
ξNL ∝ √

ln ξ‖, not one as previously thought. Mean-field, Ginzburg criterion and linear
renormalization group analyses all show that some interfacial fluctuation effects are strongly
damped for wavenumbers q > 1/ξNL. This prevents a stiffness-instability and reduces the size
of the asymptotic critical regime where non-universality can be observed. Non-universal critical
singularities along the critical wetting isotherm are determined by a smaller, effective value of
the wetting parameter which slowly approaches its asymptotic limit as the wetting film grows.
This is confirmed by numerical simulation of a discretized version of the non-local model.

(Some figures in this article are in colour only in the electronic version)

1. The problems of critical wetting

A long-standing puzzle within the renormalization group (RG)
theory of critical phenomena concerns the nature of fluctuation
effects for critical wetting transitions in three-dimensional
systems with short-ranged forces [1]. The initial theoretical
interest in this problem stems from the fact that the physical
dimension d = 3 is also the upper critical dimension for
the transition. RG analyses of a simple interfacial (capillary-
wave) Hamiltonian by Brezin, Halperin and Leibler [2] and
later Fisher and Huse [3] predict that all critical properties
are strongly non-universal and depend on the dimensionless
wetting parameter (see also [4])

ω = kBT κ2

4π�
. (1)

Here, � is the stiffness of the αβ interface that unbinds
continuously from an inert wall on approaching the wetting
temperature Tw, while κ = 1/ξβ is the inverse (true)
correlation length of the bulk phase, β , that intrudes between
the wall and bulk phase, α. Non-universality is predicted
for the divergence of three characteristic length-scales; the
equilibrium film thickness, 〈	〉, the interfacial roughness, ξ⊥,
and the parallel correlation length ξ‖. In particular, the
exponent ν‖ describing the divergence ξ‖ ∼ (Tw−T )−ν‖ shows
the highly sensitive dependence

ν‖(ω) =
{
(1 − ω)−1 for 0 < ω < 1/2

(
√

2 − √
ω)−2 for 1/2 < ω < 2.

(2)

For ω > 2, the correlation length diverges exponentially
quickly. This reveals a dramatic alteration to the mean-field
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result, νMF
‖ = 1 [5, 6], which is only recovered for an infinitely

stiff interface.
The natural testing ground for these predictions is the

wetting transition in the semi-infinite simple cubic Ising model,
above its roughening temperature. It is known that the wetting
parameter tends to a universal value ω ≈ 0.8 on approaching
the bulk critical temperature Tc [7, 8] suggesting that νRG

‖ ≈
3.7, strikingly different from its mean-field value. As is
well known, however, these predictions are not supported by
extensive Monte Carlo simulation studies of wetting in the
Ising model due to Binder, Landau and coworkers [9–12].
These simulations confirm the qualitative structure of the
global surface phase diagram, showing the locations of first-
order, critical and tricritical wetting, as predicted by Nakanishi
and Fisher [6]. However, quantitative analysis of the critical
singularities at critical wetting as manifest in the surface
magnetization and susceptibility were found to be broadly
consistent with mean-field theory. Subsequent re-analysis
of the behaviour of the surface layer susceptibility near Tw

did reveal some non-classical fluctuation effects but these are
consistent with a much smaller, effective value of the wetting
parameter ωfit ≈ 0.28±0.12 lying somewhere between the RG
and mean-field predictions [13].

Unfortunately, the problems of critical wetting do not end
here. In a series of articles in the early 1990s Fisher and
Jin [14–18] addressed the above controversy and first sought
to precise the derivation of an interfacial model from a more
microscopic Landau–Ginzburg–Wilson (LGW) Hamiltonian
by integrating out non-interfacial degrees of freedom. After
clarifying this procedure, they evaluated the interfacial model
as a gradient expansion in the interfacial height and showed
that the original capillary-wave model must be modified to
include a specific position-dependent stiffness. Then, they
generalized the linear RG flow equations and showed that
the new position-dependent term in the stiffness drove the
bare (mean-field) critical wetting transition first-order. This
stiffness-instability mechanism was forwarded as the likely
explanation for the findings of the Ising model simulations.

However, there are two problems with the Fisher–Jin
proposal, the second of which is very worrying. Firstly, the
stiffness-instability mechanism is certainly not a quantitative
explanation of the near mean-field-like criticality observed
for the Ising model. Indeed, there is no explicit evidence
for (weakly) first-order wetting in the simulation studies.
Secondly, and more importantly, Fisher and Jin drew only one
half of the conclusions predicted by their theory. If the bare
critical wetting transition is driven first-order, an identical line
of reasoning dictates that the bare first-order wetting transition
is fluctuation-induced second-order [19]. Thus the stiffness-
instability mechanism, if present in microscopic models, would
serve to exchange the lines of first-order and critical wetting
appearing in the equilibrium global surface phase diagram.
Put more starkly, if Fisher and Jin are correct then Nakanishi
and Fisher [6] must be wrong. This is an extremely unlikely
scenario, not supported by the Ising simulations, which would
contradict much of our understanding of wetting and surface
criticality. We are thus forced to conclude, that despite its
apparent systematic basis, the Fisher–Jin analysis must be

incorrect. This is also true of slightly generalized versions
of their model developed by one of us [20, 21], which
allow for coupling between fluctuations near the interface and
wall. These also show a stiffness-instability and therefore
must be similarly flawed. The analysis of Fisher and Jin
leaves us with a profound difficulty: if the derivation of an
interfacial Hamiltonian with a position-dependent stiffness and
subsequent RG analysis are sound, why does not a stiffness-
instability actually occur?

In the present paper, we show how progress may be made
towards resolving these and other problems using a non-local
(NL) interfacial Hamiltonian. The derivation of this model,
from an underlying LGW description of the wall-α interface,
was described at length in our two earlier articles [22, 23]. Our
original motivation was just to derive the form of the interfacial
Hamiltonian for fluid adsorption near structured surfaces, in
particular (acute) wedges and apexes with the prospect of
understanding connections between wedge filling and wetting
transitions [24–28]. Thus, the starting point of the analysis
is similar to that of Fisher and Jin, but generalized to non-
planar walls and identifies the interfacial Hamiltonian via a
partial trace over non-interfacial-like degrees of freedom. The
essential difference with the Fisher–Jin analysis is that the
resulting constrained minimization problem is solved using
a Green’s function method, similar to multiple reflection
expansion techniques employed for other problems [29–31],
and does not invoke a gradient expansion. This treats the
constraints arising from the interface and wall on an equal
footing and reveals a general diagrammatic structure to the
interfacial Hamiltonian. For example, at bulk coexistence, the
binding potential functional describing the interaction between
the interface and wall can be written

W [	,ψ] = a + b1 + · · · (3)

where the upper (lower) wavy-line denotes the interface shape
	(x) (wall shape ψ(x)) and the straight line represents a
kernel, similar to the bulk correlation function. This non-
local formulation sheds new light on the problems of critical
wetting discussed above. The Fisher–Jin model is only a small-
gradient approximation to the NL theory which, even for planar
walls, now crucially includes two-body, and indeed many-
body, interfacial interactions. These are characterized by a new
length-scale ξNL which diverges at the wetting transition and
is intermediate between the usual parallel correlation length
ξ‖ and the bulk correlation length ξβ . The role played by
this length-scale, in particular the dampening effect it has on
fluctuations, has not been appreciated previously and appears
to be key to resolving several issues in the theory of wetting.
While the RG theory plays a significant part in our discussion,
most of the new physics can be understood simply from the
structure of the two-body interfacial interaction and mean-field
correlation functions. Preliminary accounts of some of our
results can be found in [32] and [33].

Of necessity, our paper is quite long, dealing in turn with
several aspects of the critical wetting story in some depth. The
material covered in the remaining sections is as follows.
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Section 2. Three interfacial Hamiltonians. We compare
and contrast the capillary-wave (CW), Fisher–Jin (FJ) and NL
interfacial models recalling the linear RG analysis of the first
two. The nature of the two-body interfacial repulsion in the NL
model is discussed and the CW and FJ models are recovered
as long-wavelength approximations. The FJ model is shown
to get the sign of the interaction wrong for wavenumbers
q > 1/ξNL and is strongly suggestive that the predicted
stiffness-instability is an artefact of a poor long-wavelength
approximation.

Section 3. Mean-field correlations revisited. We show that
the presence of long-ranged two-body interfacial interactions
can be seen explicitly in the mean-field pair-wise correlation
function G(r1, r2) calculated using the underlying LGW
theory. A closed form expression for G(r1, r2), or rather its
parallel Fourier transform G(z1, z2; q), is found by solving
the Ornstein–Zernike equation. This is characterized by two
parallel correlation lengths, ξ‖ and ξNL ∝ √

ln ξ‖, signifying
a breakdown of simple scaling. In general, the second length-
scale dampens and cuts-off interfacial fluctuation effects with
wavenumbers q > 1/ξNL. We also show that within the NL
theory there exists a simple diagrammatic representation and
visualization of microscopic (spin–spin or density–density)
correlations, similar to (3), arising from the coupling of
tube-like fluctuations with the capillary-wave modes of the
unbinding interface. The singular contribution to G may be
written

Gsing(r1, r2) ∝ ∂2

∂z1∂z2
(4)

where the wiggly line represents the height–height correlation
and the open circles denote the points r1 and r2. This recovers
the expression for the singular contribution to G calculated
using the LGW model. We point out that the NL theory
is thermodynamically consistent and satisfies an exact sum-
rule requirement for complete wetting due to Henderson [34],
which is not fully obeyed by the capillary-wave theory [35, 36].

Section 4. The Ginzburg criterion revisited. Our
final sections deal with fluctuation effects beyond mean-
field beginning with a discussion of the modification of the
Ginzburg criterion determining the size of the asymptotic
critical regime. This is reduced within the NL theory due
to the length-scale ξNL, which serves to cut-off part of the
capillary-wave spectrum, and highlights the role played by an
effective wetting parameter. This effect can be traced directly
to the structure of the mean-field correlation function and, by
implication, the two-body interfacial repulsion.

Section 5. Linear RG analysis. The linear RG analysis
of Fisher and Huse is generalized to account for a two-body
interfacial interaction. Five things follow (1) No stiffness-
instability at critical wetting can occur because the two-
body interaction is always repulsive. (2) The renormalized
repulsion from the wall is weaker than predicted by the CW
theory. (3) Mean-field-like critical exponents play a more
prominent role as a lower bound on the critical behaviour,
even in the presence of fluctuations effects. (4) The leading-
order asymptotic critical behaviour displays the same non-
universality predicted by the CW theory but in a narrower
critical regime. (5) The renormalized repulsion is controlled

by an effective wetting parameter, similar to that emerging
from the Ginzburg criterion, which only approaches its limiting
value rather slowly as the wetting film grows. It is this reduced
effective wetting parameter which determines the critical
singularities occurring along the critical wetting isotherm.

All these effects can be viewed as arising because the
momentum cut-off appearing in the original CW description
of the interfacial repulsion should be replaced with a lower,
effective, value NL ≈ 1/ξNL which cuts-off part of the
capillary-wave spectrum interacting with the wall.

Section 6. Simulation studies. Simulation studies of
discretized versions of the CW, FJ and NL models are reported.
These support the predictions based on the respective linear
RG analyses for each of these models. For the NL model the
approach to the critical regime is slower than for the CW model
and we extract, numerically, the effective value of the wetting
parameter as a function of film thickness. This is compared
with theoretical predictions and the fitted value ωfit obtained
from the Ising model simulations [13].

2. Three interfacial Hamiltonians

2.1. The capillary-wave model

In three dimensions, microscopic studies of wetting are limited
to mean-field models such as Landau, square-gradient theory
and other approximate density-functional descriptions which
neglect large-scale fluctuation effects [1, 5, 6, 37, 38]. To
predict the latter, it has been necessary to resort to effective
Hamiltonian models based on a collective coordinate 	(x)
measuring the local interfacial height at vector position x =
(x, y) above the wall (see figure 1). The original model
proposed for three-dimensional wetting was [2]

HCW[	] =
∫

dx
{
�

2
(∇	)2 + W (	)

}
(5)

where, for isotropic fluids or continuum models (such as
the LGW theory), we may identify the stiffness � with the
free interfacial tension σαβ [39]. We refer to this as the
capillary-wave model. Interfacial models are only appropriate
descriptions of microscopic fluctuations at sufficiently long-
wavelength fluctuations and the first term in the CW model,
describing the energy cost of increasing the area of the
interface is only valid for the wavenumbers 0 � q <  where
 ≈ κ is the high momentum cut-off. The assumption of all
previous effective Hamiltonian studies of wetting is that this
cut-off is also appropriate for the binding potential describing
the wall–interface interaction. This binding potential was taken
to have the form

W (	) = h̄	+ ae−κ	 + b1e−2κ	 + · · · (6)

together with a hard-wall repulsion restricting the collective
coordinate 	(x) > 0. Formally, W (	) can be identified as
the free-energy of a planar interfacial configuration which is
constrained to be at a (uniform) height 	 above the wall. The
field h̄ measures the deviation from two-phase coexistence
and, in magnetic language, is proportional to the bulk ordering
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x

y
zSUBSTRATE

α

β

phase

phase

Figure 1. Schematic illustration of a wetting layer of phase β at the
interface between a planar substrate and bulk α phase. A collective
coordinate 	(x) describes the local height of the αβ interface above
the substrate. Fluctuations of the unbinding interface are
characterized by perpendicular (ξ⊥) and parallel (ξ‖) correlation
lengths.

field. The coefficient a ∝ T − T MF
w changes sign at the bare

(mean-field) critical wetting temperature T MF
w while the second

coefficient b1 > 0 is a constant. Here, we have placed a
subscript on the coefficient of the repulsion to distinguish it
from the spacial rescaling factor in the RG analysis and also to
make connection with the Fisher–Jin and NL theories easier.

A section of the global surface phase diagram showing
critical and complete wetting transitions is shown in figure 2.
Critical wetting refers to the continuous divergence of the
film thickness as T → Tw and h̄ → 0+ for which one
usually focuses on the two representative thermodynamic paths
shown as (A) and (B). Complete wetting (path C) on the other
hand, refers to the approach to coexistence above the wetting
temperature and is described by a different set of critical
exponents. These will be introduced when necessary. On
approaching a wetting transition, the singular contribution to
the surface tension, defined as

σsing = σwα − σwβ − σαβ (7)

vanishes, equivalent to having zero contact angle. Here σwα

denotes the surface tension of the wall-α interface, etc.
Before we consider the RG method we mention, that

if fluctuations are ignored and HCW[	] is simply minimized,
the mean-field expression for the film thickness, 	̂, is
recovered from solution of W ′(	̂) = 0 and determines the
singular contribution to the excess free-energy per unit area
σsing = W (	̂). Similarly, if one considers small, Gaussian,
fluctuations about the height 	̂, we may determine the mean-
field expression for the height–height correlation function. The
Fourier transform of this is defined as

g(q) ≡
∫

dx12 〈δ	(x1)δ	(x2)〉eiq·x12 (8)

where δ	(x) = 	(x) − 	̂. For the CW model, the mean-field
expression for g(q) follows directly from equipartition:

gCW(q) = kBT

W ′′(	̂)+�q2
(9)

Ordering Field

T
em

p
er

at
u

re
  T

(A)

(B)

(C)

TC

TW

α-phase β-phase

Figure 2. Phase diagram showing the coexistence between phases α
and β, represented by the black line ending at Tc. The substrate is
wet by phase β above Tw, at any point of the red segment. Different
surface phase transitions are represented by the arrows: critical
wetting (paths A and B) and complete wetting (path C).

identifying a parallel correlation length ξ‖ =
√
�/W ′′(	̂).

Within the CW theory, this is also the true correlation length
determining the large-distance decay of the height–height
correlation function. The simple Lorentzian form of the
structure factor (9), characteristic of classic Ornstein–Zernike
theory indicates that within the CW description there is only
one diverging length parallel to the wall.

A particularly clear exposition of the RG theory of three-
dimensional wetting was provided by Fisher and Huse (FH) [3]
(see also the appendix in [40]). The interfacial Hamiltonian is
written

HCW[	] = H0[	] + H1[	] (10)

where the free Hamiltonian is

H0[	] =
∫ 

dx
�

2
(∇	)2 . (11)

The superscript denotes the high momentum cut-off, which
restricts the Fourier space components 	̃(q) of 	(x) to
wavenumbers q < . The interaction of the interface with
the wall is described by the local functional

H1[	] =
∫ 

dx W (	). (12)

As explained by FH, the collective coordinate is divided into
‘fast’ and ‘slow’ contributions,

	(x) = 	<(x)+ 	>(x) (13)

where the ‘fast’ part

	>(x) =
∫ 

/b
dq eiq·x	̃(q) (14)

contains wavenumbers in the range /b < q < . Here b =
et is the spacial rescaling factor, so that x′ = x/b, while t is the
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infinitesimal renormalization parameter. In general dimension
d , the collective coordinate transforms as 	(x′) = b(d−3)/2	(x)
so that the free Hamiltonian (11) is a non-trivial fixed-point
of the RG transformation. Specializing to three dimensions
(d = 3), FH show that a linear functional RG analysis leads to
the partial differential equation

∂Wt

∂ t
= 2Wt + ωξ 2

β

∂2Wt

∂	2
(15)

describing the flow of the renormalized binding potential
Wt (	). This is solved by

Wt (	) = κe2t

√
4πωt

∫ ∞

−∞
dl ′ W0(	

′) e−κ2(	−	′)2/4ωt . (16)

To obtain the critical singularities of the wetting transition, the
RG transformation is carried through until a matching point
t = t∗ where, at the minimum 	 = 	∗ of Wt∗ (	), one has

W ′′
t∗ (	

∗) = �2. (17)

This is the condition that the renormalized correlation length is
the same size as the inverse momentum cut-off. At this scale,
mean-field theory is valid and we can identify the original
parallel correlation length

ξ‖ = et∗
(18)

and similarly for the equilibrium film thickness 〈	〉 = 	∗ and
excess free-energy σsing = e−2t∗

Wt∗(	∗). This flow equation
is exact to linear order in the potential but does not describe
properly the renormalization of the hard-wall repulsion. This
is handled approximately by assuming that, for 	 < 0, the
binding potential is a positive constant c. Thus, at h̄ = 0,
the bare binding potential is taken to be

W0(	) = W att
0 (	)+ W rep

0 (	)+ c�(−	) (19)

where

W att
0 (	) = ae−κ	�(	), W rep

0 (	) = b1e−2κ	�(	) (20)

and �(	) is the Heaviside step function. For reasons
that will become clear later, let us focus explicitly on the
renormalization of the direct repulsion within the CW theory
and write

W rep
t (	;ω) = b1κe2t

√
4πωt

∫ ∞

0
dl ′e−2κ	′−κ2(	−	′)2/4ωt (21)

where we have highlighted explicitly the dependence on the
wetting parameter.

The interplay between the three contributions to Wt (	)

arising from the attractive, repulsive and hard-wall contribu-
tions leads to the three-fluctuation regimes described earlier.
We will not need to repeat all these details but some remarks
about regimes (I) and (II) are necessary for later reference. In
regime (I), for which 0 < ω < 1/2 the hard-wall contribu-
tion (∝ c) can be dropped and the convolutions of the first-two

terms in (19) are insensitive to the short-distance restriction
	 > 0. The renormalized potential retains its exponential form

Wt (	)e
−2t ≈ aeωt−κ	 + b1e4ωt−2κ	 (22)

representing the leading-order decays. The wetting transition
still occurs at the mean-field phase boundary and the matching
condition determines ξ‖ ∼ (Tw − T )−1/(1−ω) and

κ〈	〉 = (1 + 2ω) ln ξ‖. (23)

This approximation is self-consistent provided the value of 	′
that maximizes the integrand (at the matching point), in the
saddle point evaluation of (21), is greater than zero. This is
valid for ω < 1/2, which defines regime (I).

For ω > 1/2, the analysis is more algebraically involved.
In regime (II), 1/2 < ω < 2, the transition still occurs at
a = 0 but now the hard-wall contribution (∝ c) is the same
order as the renormalized repulsion (∝ b1). This is because, at
the matching point, the contribution to the integrand in (21) is
biggest for 	′ = 0. The renormalized repulsion is determined
by fluctuations that take the interface down to the wall. On
the other hand the attractive term remains unchanged from
that shown in (22). The critical exponent is now given by
ν‖ = (

√
2−√

ω)−2 and the equilibrium wetting layer thickness
satisfies

κ〈	〉 = √
8ω ln ξ‖ + · · · . (24)

Finally, in regime (III), ω > 2, the three contributions
to Wt (	) are similar since all are dominated by the short-
distance behaviour close to the wall. Analysis shows that
fluctuations lower the wetting transition temperature and lead
to a correlation length ξ‖ that grows exponentially as T →
Tw. Behaviour pertinent to this regime will not be our main
concern.

The predictions of the linear RG theory rely on an
approximate description of the hard-wall repulsion. Indeed in
regimes (II) and (III), the explicit form of the renormalized
hard-wall repulsion is required to determine the critical
behaviour. The hard-wall is treated much better using a
nonlinear functional RG scheme [41], although, unfortunately,
it is no longer possible to extract analytically the ω dependence
of critical quantities. However, simulations of a discretized
version of the CW model [42] lend very strong support to
the presence of large-scale interfacial fluctuations and the non-
universality predicted by the linear RG analysis.

2.2. The Fisher–Jin model

Fisher and Jin [14–18] constructed an interfacial model
systematically by means of a constrained minimization of a
continuum LGW model, based on a magnetization-like order-
parameter. In the small-gradient (long-wavelength) limit they
showed that the interfacial model should be generalized to

HFJ[	] =
∫

dx
{
�(	)

2
(∇	)2 + W (	)

}
(25)

containing a position-dependent stiffness-coefficient �(	) =
� + ��(	). Both W (	) and ��(	) are determined by the

5
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double-well potential appearing in the LGW model, but are
robust to its precise form. Within the highly reliable double-
parabola approximation (see later), the binding potential is
essentially the same as the simple CW expression and, at
h̄ = 0, reads

W (	) = ae−κ	 + (b1 + b2)e
−2κ	 + · · · (26)

where b2 ∝ a2 and b1 is a positive (negative) constant for
critical (first-order) wetting. The position-dependent stiffness
decays as

��(	) = ae−κ	 − 2κ	b1e−2κ	 + · · · . (27)

FJ assumed that their model was valid over the same
wavenumber range as the original CW model, 0 � q < ,
and derived new RG flow equations

∂Wt

∂ t
= 2Wt(	)+ ωξ 2

β

∂2Wt (	)

∂	2
+ ωξ 2

β
2��t (	) (28)

∂��t (	)

∂ t
= ωξ 2

β

∂2��t (	)

∂	2
(29)

which they de-coupled. In particular, they showed that the
binding potential renormalizes precisely as in the original FH
analysis (16), but as if the bare potential were modified and
replaced with

W̄0(	) = W0(	)+
ωξ 2

β
2

2
(1 − e−2t )��(	). (30)

For large t , relevant to discussions of critical wetting, the t
dependence can be ignored so that W̄0(	) and W0(	) differ only
by a fixed term determined by ��(	). Therefore, for positive
	 > 0, the bare modified binding potential is

W̄0(	) = āe−κ	 + b1(1 − ωξ	2)e−2κ	 (31)

where ā = (1 + ωξ 2
β

2/2)a. Thus, the leading-order
contribution to the decay of ��(	) has a benign effect and
simply rescales the coefficient a. The influence of the next-
to-leading-order term is much more dramatic and raises the
possibility that the mean-field critical wetting transition is
driven first-order because the sign of the second term ∝ b1 is
negative for thick wetting films. The situation is most clear-cut
in regime (I), 0 < ω < 1/2 where the hard-wall is unimportant
and a stiffness-instability must occur (within this model). The
matching conditions show that the singular contribution to the
free-energy, σsing, vanishes at a positive value of a when the
film thickness 〈	〉 is finite. This corresponds to a first-order
wetting transition. The situation is considerably messier for
ω > 1/2 when the short-distance interactions of the interface
and wall are important. FJ argue that the transition is first-
order for sufficiently small values of ω < ω∗ beyond which the
hard-wall restores the continuous nature of the phase transition.
On the basis of a linear RG analysis, they estimated that
the tricritical value ω∗ ≈ 1, and concluded that the critical
wetting transition observed in the Ising model by Binder
and co-workers must be (weakly) first-order. An improved
treatment of the FJ model based on a numerical integration of a

nonlinear RG scheme [43] showed thatω∗ may be substantially
larger than this estimate and supported strongly the stiffness-
instability scenario for the model (25).

However, this whole line of reasoning must be mistaken
in regard to the real physics. What was missing in the original
interpretation was consideration of the impact on the global
surface phase diagram. In particular, Fisher and Jin did not
consider the converse example of a bare first-order transition
(b1 < 0). The same mixing of the RG flow equations implies
that the transition is now fluctuation-induced second-order
with similar non-universality (up to logarithmic corrections)
predicted by the original CW model. Since the coefficients a
and b1 appearing in W (	) and �(	) are uniquely determined
by the surface field and surface enhancement of the underlying
LGW model this implies that the Nakanishi–Fisher global
surface phase diagrams [6] are drastically altered. Specifically,
if the stiffness-instability mechanism is to be believed, the
loci of all lines of first-order and critical wetting have to be
interchanged [19]. This scenario is quite unacceptable and is
in direct conflict with the Ising model simulation studies. The
Fisher–Jin theory should therefore be regarded as a paradox.
We need to understand how a seemingly better interfacial
Hamiltonian leads to worse predictions.

2.3. The non-local Hamiltonian

Fisher and Jin constructed their interfacial model perturba-
tively as a gradient expansion by considering small deviations
from planar (constrained) profiles. As described in [22, 23],
it is possible to do this non-perturbatively using a Green’s
function method closely related to multiple reflection expan-
sion techniques [29–31]. This has a number of advantages and
allows one to derive an interfacial model for wetting at non-
planar walls. The NL Hamiltonian can be written

HNL[	,ψ] = σαβ A + h̄Vβ + WNL[	,ψ] (32)

and is valid for length-scales larger than the bulk correlation
length. Curvature corrections related to rigidity-like terms
can be calculated but are not considered here [23]. The
interfacial area is denoted A = ∫

dx
√

1 + (∇	)2 while Vβ =∫
dx (	(x)−ψ(x)) is the volume of wetting film. The first-two

terms in the model are therefore the same as those appearing
in the CW model. The binding potential functional WNL[	,ψ]
describes the interaction of the interface and wall. Within the
double-parabola approximation, it is given by

WNL[	,ψ] =
∞∑

n=1

{
a�n

n + b1�
n+1
n + b2�

n
n+1

}
(33)

with geometry independent coefficients a, b1 and b2 ∝ a2

the same as in the FJ binding potential. The last class of
terms (diagrams) are therefore unimportant for critical wetting
provided Tw is not altered by fluctuations. Each of the
contributions �νμ has a diagrammatic representation in which
a zig-zagging straight line (each zig and zag representing a
kernel) connects μ points on the wall (lower wavy-line) to ν
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points on the interface (upper wavy-line). The two dominant
diagrams, with their algebraic expression, are

�1
1[	,ψ] = =

∫ ∫
dsψ ds	K (rψ, r	) (34)

�2
1[	,ψ] = =

∫
dsψ

{∫
ds	K (rψ, r	)

}2

. (35)

Here, rψ and r	 are points on the wall and interface
respectively, which are integrated over using the appropriate
infinitesimal areas dsψ = dx

√
1 + (∇ψ)2 and ds	 =

dx
√

1 + (∇	)2. These surface integrations are implied by the
black circles in the diagrams. The kernel, denoted by each
straight line, is

K (r1, r2) = κ

2π |r1 − r2|e−κ |r1−r2| (36)

and is simply a normalized version of the bulk correlation
function. Thus, within the NL theory, the bare interaction
between the interface and wall emerges from bulk-like
fluctuations, constrained by the confining surfaces. It is
tempting to view the terms in WNL arising from virtual tube-
like fluctuations which tunnel between the interface and wall,
but this interpretation is not needed explicitly.

If both the wall and interface are planar, corresponding to
a thin film of constant thickness 	 and area A, all the diagrams
reduce to �μν = Ae−nκ	, where n is simply the number of
kernels (straight-lines) that span the surfaces. In this case we
recover the full expression for the FJ binding potential function
(in zero bulk field) W (	) ≡ W [	]/A:

W (	) = ae−κ	 + (b1 + b2)e−2κ	

1 − e−2κ	
(37)

which shows a hard-wall divergence as 	 → 0.
Specializing to the case of wetting at a planar wall, the NL

Hamiltonian reduces to

HNL[	] =
∫

dx
{
�

2
(∇	)2 + h̄	

}
+ WNL[	] (38)

where we have taken the usual gradient expansion for the
bending term, and dropped a constant contribution. Recall the
stiffness and tension are the same for the isotropic LGW model.
The binding potential functional may be taken as

WNL[	] = a + b1 + · · · (39)

containing just the two most important diagrams. The first
diagram reduces to

=
∫

ds e−κ	 (40)

where ds = √
1 + (∇	)2dx. This contribution is very similar

to terms appearing in simpler CW and FJ models. This is also
true for the (irrelevant) diagram �1

2 = ∫
ds e−2κ	 which is also

local and generates the b2e−2κ	 term in (26).

Differences between the CW and FJ models emerge from
the �2

1 diagram, describing the direct repulsion at critical
wetting. Using a convolution to integrate over the point on
the wall leads to

b1 =
∫ ∫

ds1 ds2U(x12; 	̄) (41)

where dsi = dxi

√
1 + (∇	(xi))2 is the infinitesimal interfacial

area at the points (i = 1, 2) and

U(x; 	) = b1κ
2

2π

∫ ∞

2κ	
dτ

e−√
τ 2+κ2 x2

√
τ 2 + κ2x2

(42)

is an isotropic two-body interfacial interaction. Here, x12 ≡
|x1 − x2|, while

	̄ = 	(x1)+ 	(x2)

2
(43)

is the arithmetic mean interfacial height. For thick wetting
films, κ	 � 1, we can approximate

U(x; 	) ≈ b1κ

2π	
e−2κ	 e−κx2/4	 (44)

which is equivalent to writing the �2
1 diagram as

≈
∫ ∫

ds1 ds2e−κ	(x1)S(x12)e
−κ	(x2) (45)

where S(x12) is another two-body interfacial interaction

S(x) = 1

4πξ 2
NL

e−κx2/4ξ 2
NL (46)

with the form of a simple Gaussian. Here, we have identified
the characteristic length of the Gaussian repulsion as

ξNL =
√
	̄

κ
(47)

which is where the new length-scale in the NL description
arises. The integrated strength of S is unity.

The presence of a two-body interaction, generated by
integrating out degrees of freedom from a strictly short-ranged
local LGW model, is the crucial new ingredient in the NL
model and will play a central role in resolving the problems of
critical wetting. The Gaussian interaction (46), has both long-
ranged and short-ranged properties, decaying faster than any
power law but with a characteristic length that diverges as the
interface unbinds. Similar two-body interactions and length-
scales arise in the higher-order diagrams which generate the
hard-wall repulsion [23] and restrict the interface to 	(x) > 0.
Three-body interfacial interactions are important for tricritical
wetting but will not be considered here [23].

2.4. CW and FJ models as long-wavelength approximations

The CW and FJ models can be recovered as long-wavelength
approximations to the NL model which now sheds new
light on their origin and validity. Consider first the �1

1
diagram (40) which, for planar walls, remains a local

7
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interaction. Expanding,
√

1 + (∇	)2 = 1 + (∇	)2/2 + · · ·
recovers the leading-order exponential decays in the binding
potential and stiffness-coefficient appearing in the FJ model
and explains why their coefficients are the same. These remain
valid approximations provided the gradient is small which is
true at length-scales much larger than the bulk correlation
length. The NL model therefore has nothing new to say about
these terms in the FJ model.

This is not the case for the�2
1 diagram describing the bare

repulsion in the binding potential. For fixed ξNL, the Fourier
transform of the two-body Gaussian is

S(q) = e−q2ξ 2
NL (48)

and decays very quickly for wavenumbers q > 1/ξNL. The
CW and FJ models do not describe this correctly (see figure 3)
and are equivalent to the small q approximations

SCW(q) ≈ 1 (49)

and
SFJ(q) ≈ 1 − q2ξ 2

NL (50)

respectively. Inverting these expressions, we see that they are
equivalent to setting, in real space,

SCW(x) ≈ δ(x12) (51)

and
SFJ(x) ≈ (

1 − κ	(∇	)2) δ(x12) (52)

which recovers, immediately, the CW and FJ models from the
NL theory. These are both rather poor treatments of the two-
body interaction because they fail to account properly for the
second parallel length-scale ξNL. In particular, the second term
in the last expression generates the troublesome polynomial
correction in the FJ stiffness-coefficient, proportional to
−	e−2κ	, which leads to the stiffness-instability. This is only
valid for small wavevectors and is completely inadequate for
q > 1/ξNL, where it gets the sign of the interaction wrong.
This is the source of the stability problem in the FJ model
which can now be seen as an artefact of using the long-
wavelength approximation over the entire wavevector range.
In reality, the two-body interaction is always repulsive and
therefore no stiffness-instability is ever possible. Similarly,
the CW model overestimates the strength of the repulsion from
the wall for wavevectors q > 1/ξNL. The actual repulsion is
weaker at these length-scales. The above remarks highlight the
essential new physics contained in the non-local model.

3. Mean-field correlations revisited: two parallel
length-scales

3.1. The LGW model

Before we consider the influence of the new length-scale ξNL

on the RG predictions, we show that its presence can be
seen directly from analysis of correlation functions within a
microscopic theory. To this end, we return to the starting

0 0.5 1 1.5 2 2.5 3

q ξ
NL

-0.5

0

0.5

1

S(q)

CAPILLARY-WAVE MODEL

FISHER-JIN

NON-LOCAL MODEL

MODEL

Figure 3. The Fourier transform S(q) of the two-body interfacial
interaction S(x) describing the direct interfacial repulsion from the
wall for critical wetting. The FJ expression gets the sign of the
interaction wrong for wavenumbers q > 1/ξNL, which is the source
of the apparent stiffness-instability in their theory. The repulsion is
weaker in the NL theory than in the original CW description, leading
to thinner wetting films and a smaller asymptotic critical regime.

point of wetting theory itself [37] and consider the mean-field
treatment of the LGW Hamiltonian [6]

HLGW[m] =
∫

dr
{

1
2 (∇m)2 + φ(m)

}
(53)

based on a magnetization-like order-parameter m(r). The
system is bounded by a planar wall in the z = 0 plane and
we consider the simplest choice of boundary condition with
fixed surface magnetization m = m1 > 0. For this model,
first-order wetting transitions do not arise and the surface
phase diagram is particularly simple showing only critical and
complete wetting behaviour (figure 2). A bulk potential φ(m)
describes the coexistence of bulk phases α and β (in zero bulk
field h = 0) which we associate with negative and positive
magnetizations, respectively. For simplicity, we impose Ising
symmetry so that in zero field mβ = −mα = m0 where
m0 = m0(T ) is the spontaneous magnetization. In order
to generate a wetting layer of the β phase, we suppose we
are below the bulk critical temperature and h � 0, so that
infinitely far from the wall the bulk magnetization is negative
corresponding to phase α. We identify the thickness of the
adsorbed wetting layer from m(	̂) = 0, where m(z) = 〈m(r)〉
is the equilibrium magnetization profile.

Minimizing (53) leads to the familiar Euler–Lagrange
equation for the mean-field profile

m ′′(z) = φ′(m) (54)

which is solved subject to m(0) = m1 and m(∞) = mα . This
has a well known graphical solution due to Cahn [37] valid
for quite general choices of the potential φ(m) and indicates
the presence of a critical wetting transition at temperature Tw

for which m1 = m0(T ). For temperatures such that m1 >

m0(T ), the wall-α interface is completely wet by the β phase

8
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corresponding to zero contact angle. For critical wetting, it is
convenient to define the temperature-like scaling field

τ ≡ m1 − m0

m0
(55)

which is also an appropriate definition beyond mean-field, in
3D, provided we restrict attention to ω < 2.

We wish to calculate the pair-correlation function
G(r1, r2) = 〈m(r1)m(r2)〉 − 〈m(r1)〉〈m(r2)〉 and investigate
its behaviour at critical and complete wetting transitions. It is
convenient to exploit the translational invariance of the profile
parallel to the wall and introduce the transverse or parallel
Fourier transform

G(z1, z2; q) ≡
∫

dx12 eiq·x12 G(r1, r2) (56)

where x12 is the parallel displacement vector between the two
points at heights z1 and z2, respectively. At mean-field level,
the Ornstein–Zernike equation for G reduces to the differential
equation

(−∂2
z1

+�′′(m(z1))+ q2
)G(z1, z2; q) = δ(z1 − z2) (57)

and vanishes when one particle is at the wall due to the choice
of fixed boundary conditions. In writing this, we have set
kBT = 1 for convenience.

A closed form expression for G(z1, z2; q)may be obtained
within the double-parabola (DP) approximation [44, 45, 14, 22]

φ(m) = κ2

2
(|m| − m0)

2 − hm (58)

which contains all the essential physics necessary for a
description of critical and complete wetting transition. Here
κ denotes the inverse bulk correlation length which, for
simplicity, we assume to be independent of the bulk field. The
profile m(z) is readily calculated in the DP approximation and
leads to a film thickness

κ	̂ = − ln

⎧
⎨

⎩
−τ

2
+ h

2m0κ2
+
√
(τ − h/m0κ2)2

4
− h

m0κ2

⎫
⎬

⎭
.

(59)
This recovers the well known logarithmic divergences for both
critical wetting (paths (A) and (B)) and complete wetting (path
C) transitions.

The calculation of the correlation function is also
straightforward provided one allows correctly for the delta
functions appearing in φ′′(m). We only quote the result in the
region of most interest where the particle positions are within
the wetting layer and verify 0 � z1 � z2 � 	̂. The solution
separates conveniently into singular and regular parts

G(z1, z2; q) = Gsing(z1, z2; q)+ Greg(z1, z2; q) (60)

both of which have physical interpretations. Defining

κq ≡
√
κ2 + q2 (61)

the regular contribution is

Greg(z1, z2; q) = sinh(κq z1) sinh(κq(	̂− z2))

κq sinh(κq 	̂)
(62)

and contains no parallel length-scales that diverge as 	 → ∞.
The function Greg can be identified as the correlation function
for a thin film with two surfaces of fixed magnetization: m =
m1 at z = 0 and m = 0 at z = 	̂. The regular contribution
vanishes if a particle is at one of these planes. It carries
no information arising from interfacial fluctuations which are
instead described by the singular contribution

Gsing(z1, z2; q) = �(z1; q)�(z2; q)

E(q)
. (63)

Here

�(z; q) = m0κ
sinh κq z

sinh κq 	̂
(64)

and
E(q)

κ2m2
0

= 2κq

1 − e−2κq 	̂
− 2κ

1 − h/m0κ2
. (65)

The simple product nature of the singular contribution is
reminiscent of the leading term in a spectral expansion with
� playing the role of the ground state eigenfunction [46]. We
want to emphasize, however, that the result (63) contains the
full wavevector dependence implicit in the complete spectral
expansion. The simplicity of the closed form expression for
G(z1, z2; q), which is available in the DP approximation, has
a number of advantages over other approaches which have
focused either on the moments of the correlation function or
its spectral expansion [46–48].

3.2. Two diverging parallel length-scales

Next, we consider what in mean-field theory can be considered
the scaling limit. We focus on thick wetting films κ	̂ � 1
and wavelengths long compared to the bulk correlation length,
q � κ . The distances z1 and z2 are left arbitrary but we
suppose they are each more than (say) one bulk correlation
length from the wall. In these limits, we can approximate

�(z; q) ≈ m0κeκq (z−	̂). (66)

Notice that the decay length of the exponential is wavevector
dependent and not precisely equal to the bulk correlation
length. Similarly,

E(q) ≈ 2m0κ |h| + 2m2
0κ

3e−2κ	̂−q2 	̂/κ + σαβq2 + · · · (67)

where σαβ = m2
0κ is the surface tension of the free αβ interface

for the DP potential [22]. The wavevector dependence of E(q)
is therefore characterized by two diverging length-scales. The
larger of these is the usual parallel correlation length identified
as

ξ‖ =
√
σαβ

E(0)
. (68)
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This is the analogue of the length
√
�/W ′′(	̂) appearing in the

CW model. However there is also a second coherence length

ξ̂NL =
√
	̂

κ
(69)

which also diverges as the film grows. This is clearly the
mean-field value of length-scale (47) describing the two-
body interfacial interaction S(x) which appears in the NL
model. Equivalently we can write κξ̂NL ∝ √

ln(κξ‖) which

implies that ξ̂NL is similar to the roughness of the αβ interface
induced by thermal fluctuations. The closed form expression
for the pair-correlation function contains detailed information
concerning both the manifestation and damping of fluctuation
effects at 3D wetting brought about by the second length-scale.

Consider for example, the approach to critical wetting
at bulk coexistence (path A). Within the wetting layer, the
magnetization profile is simply

m(z) = m0 − m0eκ(z−	̂) (70)

where κ	̂ = ln(m0/(m0 − m1)). A similar exponential decay,
controlled by the bulk correlation length, happens for z > 	̂.
Near the αβ interface, the correlation function is

G(	̂, 	̂; q) ≈ G(	̂, 	̂; 0)

e−q2 ξ̂ 2
NL + q2ξ 2

‖
(71)

where, the zeroth moment

G(	̂, 	̂; 0) = m ′(	̂)2ξ 2
‖

σαβ
. (72)

Here m ′(	̂) = −κm0 is the gradient of the magnetization
profile at the location of the interface. The parallel correlation
length satisfies

ξ 2
‖ = σαβ

2m2
0κ

3τ 2
(73)

which identifies the mean-field critical wetting exponent
νMF

‖ = 1. The expression for the zeroth moment has been
discussed many times before and has a simple interpretation
which is correctly captured by the capillary-wave theory. In
the strict q → 0 limit, magnetization fluctuations arise from
translations in the interfacial height and we expect G(	̂, 	̂; 0) =
m ′(	)2g(0) where g(q) is the Fourier transform of the height–
height correlation function. The CW expression (9) gets this
bit right.

However, comparison of (71) and (9) reveals that the
wavevector dependence of the LGW correlation function is
more involved than in the simple CW theory due to presence of
the second length-scale. Specifically the denominator of (71)
is only well approximated by 1 + q2ξ 2

‖ , as predicted by CW

theory, provided the wavenumbers satisfy q < 1/ξ̂NL and
not q < κ as previously assumed. Since ξ̂NL diverges as
the interface unbinds, this implies that a broad part of the
interfacial spectrum has been treated incorrectly. A clue to
what is happening in the regime 1/ξ̂NL < q < κ can be read

directly from the LGW result (71). In this case, the first term
in the denominator can be neglected and

G(	̂, 	̂; q) ≈ m ′(	)2

q2σαβ
. (74)

This is the same as the result for the correlation function for
a free αβ interface infinitely far from a wall. In other words,
for critical wetting, interfacial fluctuations with wavenumbers
in the range 1/ξ̂NL < q < κ appear to be independent of
the presence of the substrate. This feature is not specific
to the double-parabola approximation. For example, it can
also be seen in the correlation function G(z1, z2; q) calculated
for the potential φ(m) = −rm2/2 + um4/4 (in zero bulk
field). Indeed, it is implicit in the equations derived by Brezin,
Halperin and Leibler [46] in their original examination of
the upper critical dimension for wetting (see their equations
(26a)–(26e), noting there is a missing ∓ sign in the argument
of the exponential in (26a)). These authors concentrated on
extracting the dominant length-scale ξ‖ and did not notice the
property (74).

There is more evidence for different interfacial behaviour
in this wavevector range when we consider the correlation
function away from the interface. Directly from (63), the
singular contribution is

Gsing(z1, z2; q) ≈ eκq (z1−	̂)eκq (z2−	̂)G(	̂, 	̂; q) (75)

which is valid for both critical and complete wetting. Only at
q = 0 may we associated each exponential with the derivative
of the profile (70). More generally the inverse decay length is
κq = √

κ2 + q2. If one or both particle positions are near the
wall, this introduces significant new wavevector dependence
controlled by the length-scale ξ̂NL. For example, the correlation
function near the wall is

Gsing(0, 0; q) ≈ e−2κ	̂G(	̂, 	̂; q)e−q2ξ̂ 2
NL (76)

which for critical wetting (path A) reduces to

Gsing(0, 0; q) ≈ 1

2κ

e−q2 ξ̂ 2
NL

e−q2 ξ̂ 2
NL + q2ξ 2

‖
. (77)

The zeroth moment Gsing
0 (0, 0) ≡ Gsing(0, 0; 0) = 1

2κ remains
finite at the phase transition. This is consistent with an exact
sum-rule Gsing

0 (0, 0) ≈ (−t)−αs where αMF
s = 0 is the

mean-field value of the specific heat exponent [36]. A more
telling feature is that the presence of the exponential damping
in the numerator implying that the singular contribution is
strongly suppressed for wavenumbers q > 1/ξ̂NL. Essentially,
there is no singular contribution to G(0, 0; q) in this range of
wavevectors. Interfacial fluctuations are damped long before
we reach the scale of the bulk correlation length ξβ . There are
a number of consequences of this damping to which we will
return later.

Finally, we note that the presence of two diverging
parallel length-scales in the structure factor G(z1, z2; q) has
implications for the true correlation length ξT

‖ characterizing
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Figure 4. Example of a wetting diagram and its algebraic expression.

the asymptotic large distance, x12 → ∞, decay of the pair-
correlation function G(r1, r2) ≈ e−x12/ξ

T
‖ . This is determined,

in standard fashion, through the zero of the function E(q) lying
on the imaginary axis of q , considered in the complex plane:

E
(
i/ξT

‖
) = 0. (78)

Thus, along path A, the true correlation length is found from
the solution of

eξ̂
2
NL/(ξ

T‖ )2 = ξ 2
‖

(ξT
‖ )2

(79)

hence
(ξT

‖ )
2 ≈ ξ 2

‖ − ξ̂ 2
NL. (80)

The true correlation length is therefore slightly smaller than ξ‖
and contains a singular correction term. Within the CW theory
no such distinction between the length-scales ξ‖ and ξT

‖ arises.

3.3. Correlation functions within the NL model

In this section, we show that the NL theory reproduces the
LGW result for the singular contribution to the pair-correlation
function and has a simple diagrammatic formulation. To show
this we will need to reproduce some details of the derivation of
the NL model [22, 23]. The starting point for the derivation is
the LGW model (53) generalized to allow for non-planar walls
described by a height function ψ(x) but with the same choice
of fixed magnetization boundary conditions m(rψ) = m1

where rψ = (x, ψ) is an arbitrary point on the wall. The wall
is in contact with the bulk phase α and preferentially adsorbs
a film of the β phase. A collective coordinate 	(x) denotes the
location of a surface of iso-magnetization m(r	) = 0 where
r	 = (x, 	) is an arbitrary point on the αβ interface. This
is the cross-criterion definition of the interfacial height. The
interfacial Hamiltonian is then defined following the recipe of
Fisher and Jin [14]

H [	,ψ] = H [m�] − Fwβ [ψ] (81)

where Fwβ[ψ] is the excess free-energy of the wall-β
interface. Here, m�(r) is the magnetization that minimizes the
LGW Hamiltonian subject to the crossing criterion constraint
m(r	) = 0 and wall and bulk boundary conditions. Within the
DP approximation, this solves the Helmholtz equation

∇2m = κ2(m − m0) (82)

where we have assumed, for simplicity, h = 0 and have
focused only on the magnetization within the wetting layer

(m > 0). This is solved using a multiple reflection expansion
involving surface integrals of the Green’s function K (r1, r2)

given in (36). We represent K diagrammatically by a straight
thick line with the open circles denoting the end points

K (r1, r2) = . (83)

Using this, we can write the constrained magnetization

m�(r) = m0 − m0

(
− + − · · ·

)

+ δm1

(
− + − · · ·

)
(84)

where δm1 = m1 − m0 and the interpretation of the wavy-
lines, representing the interface and wall, and also the black
dot (surface integral) is as before. This is illustrated in
figure 4. The expression (84) is an exact solution to the
Helmholtz equation, and satisfies the boundary conditions at
the interface and wall to exponentially accurate order in the
radii of curvature. On substitution into (81) and after some
algebra, we arrive at the non-local model (32) with geometry
independent coefficients

a

σαβ
= 2τ,

b1

σαβ
= 1,

b2

σαβ
= τ 2. (85)

The derivation of the model can be readily extended to non-
zero bulk fields h < 0 [49]. This generates the thermodynamic
contribution V̄β (see (32)) where h̄ = 2m0|h| and has only very
minor influence on the coefficients a, b1, b2, . . . which can be
safely ignored.

The NL model provides a simple explanation of
correlation function structure at 3D wetting. Key to this
is the relationship between fluctuations (correlations) in the
interfacial height 	(x) and fluctuations (correlations) in the
microscopic order-parameter m(r). Consider again the
connected height–height correlation function

g(x1, x2) ≡ 〈δ	(x1)δ	(x2)〉. (86)

At mean-field level, this follows simply from solution of the
interfacial version of the Ornstein–Zernike equation

∫
dx3 c(x1, x3)g(x3, x2) = δ(x1 − x2). (87)

Here, the direct interfacial correlation function is defined in the
usual way as the second-functional derivative of the interfacial
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Hamiltonian (setting kBT = 1):

c(x1, x2) = δ2 H [	]
δ	(x1)δ	(x2)

(88)

where the derivatives are evaluated at the equilibrium
interfacial profile 	̂. For the case of wetting at planar substrates,
both c(x1, x2) and g(x1, x2) depend only on the transverse
separation x12 = |x1 − x2|. Consequently, their Fourier
transforms, defined analogous to (8), satisfy

g(q) = 1

c̃(q)
. (89)

For the non-local model (38), the functional derivatives
required to generate c are readily performed. Using only the
dominant diagrams �1

1 and �2
1, we find

c̃(q) = 2κm0|h| + 2b1κ
2e−2κ	̂S(q)+ σαβq2 + · · · . (90)

Here S(q) = e−q2ξ 2
NL is the Fourier transform of the two-body

interfacial interaction discussed earlier. This reproduces the
long-wavelength expression for E(q) appearing in the LGW
calculation.

The explicit relationship between the constrained magne-
tization and the interfacial configuration identifies the corre-
sponding connected magnetization–magnetization correlation
function as

〈δm(r1)δm(r2)〉 =
∫ ∫

dx3 dx4
δm�(r1)

δ	(x3)

δm�(r2)

δ	(x4)
g(x3, x4).

(91)
The functional derivative of m� is easily determined from
the expansion (84). Only the first term, containing a
single kernel, is of importance (the reflections giving rise to
exponentially small corrections). The leading contribution to
the magnetization correlation function, within the NL theory,
is therefore

GNL(r1, r2)

m2
0

= ∂2

∂z1 ∂z2

×
∫ ∫

dx3 dx4 K (r1, r3)g(x3, x4)K (r4, r2) (92)

where ri = (xi , 	̂) is a point on the interface (i = 3, 4). This
has the short-hand diagrammatic representation

GNL(r1, r2)

m2
0

= ∂2

∂z1∂z2
(93)

where the wiggly line represents the height–height correlation
function g(x12).

To continue, we take the Fourier transform of (92) and
arrive at our final result

GNL(z1, z2; q) = m2
0

K̃ ′(z1 − 	̂; q)K̃ ′(z2 − 	̂; q)

c̃(q)
(94)

where
K̃ (z; q) = κ

κq
e−κq |z| (95)

is the transverse Fourier transform of the Green’s function (36)
and the prime denotes the derivative w.r.t. z. It is clear that
�(z, q) ≈ m0 K̃ ′(z − 	̂; q), implying GNL ≈ Gsing. Thus, the
NL theory describes correctly the position dependence of the
singular contribution to the magnetization correlation function.
One may picture the singular or interfacial contribution to
the magnetization correlation function arising in the following
manner: bulk-like correlations represented by the Ornstein–
Zernike-like function (36) connect each of the two points r1

and r2 to different points on interface which are themselves
correlated by the interfacial fluctuations. Again, it is
tempting to associate each bulk-like correlation as itself arising
from tube-like fluctuations but this is not needed explicitly.
However, the scaling relation between the second parallel
correlation length and the interfacial height, ξNL ∼ 	1/2, is
strikingly similar to the transverse wandering induced by the
thermal fluctuations of a one-dimensional object of length 	.

3.4. Correlation functions at complete wetting and
Henderson’s sum-rule

Our paper is primarily concerned with the problems of critical
wetting theory. It turns out, however, that the NL description
also helps explain a problem that has been discussed in the
context of the complete wetting transition. This is related to the
interpretation of exact statistical mechanical sum-rules [36].

Consider correlation functions in the approach to complete
wetting (path C in the surface phase diagram). The second
term in (67), which depends on the length-scale ξNL, is
now of negligible importance. Consequently, the mean-field
correlation function near the αβ interface is

G(	̂, 	̂; q) ≈ m0κ
2

2m0κ |h| + σαβq2
(96)

which identifies the parallel correlation length

ξ‖ =
√

σαβ

2m0κ |h| . (97)

This reproduces the well known result for the correlation
function critical exponent at complete wetting νco

‖ = 1/2 [1].
The wavevector dependence is simpler than the analogous
result for critical wetting (71) and has a Ornstein–Zernike-
like form that is captured correctly by the CW theory. This
is because the dominant interfacial repulsion in the binding
potential is now described by the local term �1

1, rather than
the non-local term �2

1. Thus, the second parallel length-scale
ξNL does not have any significant importance for correlation
function structure near the unbinding interface.

However, the wavevector dependence becomes more
involved as we move away from the interface. The singular
contribution to G is given by

Gsing(z1, z2; q) ≈ �(z1; q)�(z2; q)

2m0κ |h| + σαβq2
(98)

where the position dependence arises from �(z; q) ≈
m0κeκq (z−	̂). Thus, when both particles are near the wall

Gsing(0, 0; q) ∝ h2

2m0κ |h| + σαβq2
e−	̂q2/κ (99)
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where the coefficient of proportionality is ∝(T − Tw)
−2

and remains finite since T > Tw. The final term is the
damping factor e−q2 ξ̂ 2

NL , discussed earlier, which we have
written explicitly in terms of the film thickness.

Defining the moment expansion

G(z1, z2; q) = G0(z1, z2)− q2G2(z1, z2)+ · · · (100)

we are led to the identifications Gsing
0 (0, 0) ∝ h and, more

interestingly,

Gsing
2 (0, 0) ∝ σαβ + 2m0|h|	̂. (101)

This may be compared with a exact many-body theory sum-
rule due to Henderson [34] for complete drying by vapour
(phase β) at the interface between a purely hard-wall and a
bulk liquid (α):

G2(0, 0) = σwα (102)

where σwα is the total surface tension of the wall-α interface
written in units of kBT . It is natural to identify the singular
contribution to the second moment, Gsing

2 (0, 0) = G2(0, 0) −
Greg

2 (0, 0), where we have simply subtracted the regular
contribution Greg

2 (0, 0) = σwβ corresponding to the correlation
function for the wall-β interface. Therefore, Henderson’s exact
sum-rule for the singular contribution is

Gsing
2 (0, 0) = σαβ + σsing (103)

where σsing is the singular contribution to the excess-free-
energy. In mean-field approximation, σsing = W (	̂), which
for short-ranged forces is simply σsing ≈ 2m0|h|	̂, yielding
σsing ∼ h̄ ln h̄.

Therefore, there are two singular contributions to the
second moment G2(0, 0); a finite, leading term equated with
the interfacial tension σαβ and a next-to-leading non-analytic
contribution σsing. Importantly, (101) includes both these terms
needed to fully satisfy the exact sum-rule (103). Previously
it has not been clear how the contribution σsing to G2(0, 0)
could arise within the framework of an effective Hamiltonian
description. Within the NL theory, its origin can be traced
explicitly to the expansion of the damping term e−q2 ξ̂ 2

NL in (99)
and, hence, to the role played by the second diverging length-
scale. If this term were not present, the sum-rule would not be
satisfied. Since the sum-rule is exact, it provides insight into
what is happening beyond mean-field. Recall that, for three-
dimensional systems with short-ranged forces, the mean-field
predictions for complete wetting are not significantly altered
by fluctuation effects. This was considered explicitly by Fisher
and Huse [3] using the linear RG analysis of the CW model.
The parallel correlation length retains its mean-field expression
ξ‖ = (σαβ/(2m0κ |h|))1/2, while the equilibrium wetting layer
thickness grows logarithmically as coexistence is approached,
similar to the mean-field prediction but with a modified critical
amplitude. Thus, provided ω < 2, one finds κ〈	〉 ≈ (2 +
ω) ln ξ‖ with a similar result for ω > 2. Also, the singular
contribution to the free-energy σsing ≈ 2m0|h|〈	〉, similar
to the mean-field critical behaviour. The up-shot of these
considerations is that the expressions (99) and (101) remain

valid beyond mean-field and satisfy Henderson’s exact sum-
rule, provided we simply replace the mean-field film thickness
with the equilibrium value 〈	〉. This is strongly suggestive
that, for all values of ω, the correlation function structure
is determined by two diverging parallel length-scales ξ‖ and
ξNL = √〈	〉ξβ .

4. The Ginzburg criterion revisited: reduction of the
critical regime

Let us consider the path to critical wetting at bulk coexistence
(path A) as described by an interfacial Hamiltonian H [	]
(CW or NL). Following standard methods, we expand the
Hamiltonian to quadratic order about the mean-field interfacial
location 	̂ and perform the Gaussian functional integrals. This
generates the usual (one-loop) correction to the appropriate
free-energy which in our case is the singular contribution to
the surface tension of the wall-α interface. In three dimensions,
this reads

σ
(1)
sing = σ

(0)
sing − kBT

4π

∫ 

0
dqq ln c̃(q). (104)

The zeroth-order mean-field result σ (0)sing ∝ −τ 2 is the same
in both the CW and NL theories. Differences emerge in the
expression for the interfacial direct correlation function. For
the CW model,

c̃CW(q) = �q2 +�ξ−2
‖ (105)

in contrast with

c̃NL(q) = �q2 +�ξ−2
‖ S(q) (106)

for the NL theory. Here, ξ‖ ∼ (−τ )−1 is the mean-field

result for the parallel correlation length and S(q) = e−q2 ξ̂ 2
NL .

As expected, the NL model recovers the CW model (or more
correctly the FJ model) for small q , but there are significant
differences when the wavenumber q > 1/ξ̂NL. Derivatives
of the free-energy determine thermodynamic observables and
it is easiest to study the derivative of σ sing w.r.t. τ which
generates the singular contribution to the magnetization near
the wall msing

1 ∼ (−τ )1−αs .. The zeroth-order mean-field result
remains valid provided the one-loop correction is negligible in
comparison. The interpretation here is quite straightforward
since the critical wetting temperature Tw is not altered by
fluctuation effects for ω < 2. The derivatives are easily
performed, leading to the following Ginzburg criteria. For the
CW model, mean-field is valid provided

κ2

2π�

∫ 

0
dq

q

q2 + ξ−2
‖

� 1 (107)

which reduces to

ln
(
1 +2ξ 2

‖
) � 1

ω
. (108)

This is very similar to the Ginzburg criterion derived by
Halpin-Healy and Brezin [50] for the approach to critical
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wetting along the critical isotherm, T = Tw, h → 0− (path
B). The above condition ties in neatly with the RG analysis
for the CW model described earlier. Comparison with the
integrated flow equation (16) shows that (108) is equivalent to
requiring that, at the matching point, the width of the Gaussian
convolution, which essentially measures the roughness ξ⊥ of
the αβ interface, is much smaller the bulk correlation length
ξβ .

For the NL model on the other hand, mean-field theory is
valid provided

κ2

2π�

∫ 

0
dq

qe−q2ξ̂ 2
NL

q2 + ξ−2
‖ e−q2 ξ̂ 2

NL

� 1 (109)

which shows the dampening effect arising from the second
length-scale. Remarkably, this integral converges even if the
high momentum cut-off  is set to infinity—something which
can not be done in the CW theory. It is clear that the damping
factor effectively reduces the upper-limit of the integral so that
we can approximate

κ2

2π�

∫ NL

0
dq

q

q2 + ξ−2
‖

� 1 (110)

where, at this one-loop level, we can identify an effective cut-
off

NL ≈ 1

ξ̂NL

. (111)

This expresses the fact that wavenumbers q > 1/ξ̂NL

do not contribute to the one-loop correction to the surface
magnetization. This is similar to the behaviour seen earlier in
the mean-field correlation function G(	̂, 	̂; q) which, recall, is
independent of the presence of the wall for q > 1/ξ̂NL. Thus,
the Ginzburg criterion reduces to

ln
(
1 +2

NLξ
2
‖
) � 1

ω
(112)

showing that non-locality reduces the size of the asymptotic
regime. Later we shall see how this ties in with the linear RG
analysis of the NL model.

The amended Ginzburg criterion also emerges very
simply from the mean-field results for the correlation function
obtained for the LGW model. Taking the inverse Fourier
transform, the integral over all wavevectors

∫
dqGsing(0, 0; q) = 〈δm2

1〉 (113)

determines the singular contribution to the mean-square
surface magnetization. This may be compared to the square of
the mean value 〈δm1〉2 = m2

0e−2κ	̂ from the tail of the mean-
field magnetization profile due to the αβ interface. A Ginzburg
criterion may, hence, be formulated as the condition

∫
dqGsing(0, 0; q) � 〈δm1〉2 (114)

which, on using (77), reproduces (112). Therefore, we can
be confident that the Ginzburg criteria calculated using the

NL interfacial Hamiltonian is the same as that pertinent to the
underlying LGW theory.

Comparison of equations (108) and (112) shows that one
may re-express the Ginzburg criterion for the NL model as

ln(1 +2ξ 2
‖ ) � 1

ωeff
(115)

where we have introduced an effective value of the wetting
parameter

ωeff = ω
ln(1 +2

NLξ
2
‖ )

ln(1 +2ξ 2
‖ )
. (116)

This is just as another way of expressing the reduction in the
cut-off due to the dampening influence of the length-scale ξNL.
For thick films, this reduces to

ωeff = ω − ω
ln(ξ̂NL)

ln(ξ‖)
+ · · · . (117)

A similar expression for an effective wetting parameter also
emerges from an RG analysis, which we turn to next.

5. Functional renormalization for a two-body
interfacial potential

5.1. Linearized functional recursion relations

It is straightforward to generalize the linear RG analysis to
account for the two-body nature of the repulsive interfacial
interaction U(x; 	̄). Although it would have been preferable
to generalize the nonlinear RG scheme [41] to assess the role
played by the hard-wall condition, we have not been able to
do this and, in fact, questions remain on how to model best
the hard-wall using the linear RG when a non-local repulsion
is present. Fortunately, these subtleties do not impact on
fluctuation effects in regime (I), for which 0 < ω < 1/2, where
the hard-wall is unimportant and the linear RG is most reliable.
If a stiffness-instability does not occur in this regime, then it is
certainly not present in regimes (II) and (III).

The starting point for our analysis is the small-gradient
approximation,

HNL[	] =
∫

dx
{
�

2
(∇	)2 + V (	)

}
+�WNL[	] (118)

where we have split the NL binding potential functional into
local and non-local contributions. The local contribution
models the attractive part of the potential, and is the same as
in the CW theory

V (	) = h̄	+ ae−κ	 (119)

where the exponential decay arises from the �1
1 diagram. For

the non-local interaction, we write

�WNL[	] =
∫ ∫

dx1 dx2U(x12; 	̄) (120)

where, as before,

U(x; 	) = b1κ
2

2π

∫ ∞

2κ	
dτ

e−√
τ 2+κ2 x2

√
τ 2 + κ2x2

(121)
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depends only on the arithmetic mean interfacial height 	̄
of the two points, and x12 = |x2 − x1|. The two-body
interaction U(x; 	̄) accounts for the length-scale ξNL and is
responsible for the term proportional to −	e−2κ	 in the FJ
stiffness, which induced the instability. The high momentum
cut-off for all terms in the Hamiltonian is  ≈ κ and
a hard-wall condition restricts 	(x) > 0. In writing this
Hamiltonian, we have simplified the full NL description using
the usual gradient expansion for the interfacial area ds	 =
dx
√

1 + (∇	)2 ≈ dx(1+(∇	)2/2) and discarding the position-
dependent stiffness contributions which emerge trivially from
this expansion. These aren’t responsible for the stiffness-
instability in the FJ model. However, the linear RG approach
presented in this section can be easily extended to take into
account these extra terms. The solution of the RG flow is
technically more complicated, but the obtained results do not
alter the conclusions outlined in this section [51].

Because of the linear nature of the present RG scheme,
we can anticipate that the local contribution satisfies the flow
equation of Fisher and Huse

∂Vt

∂ t
= 2Vt + ωξ 2

β

∂2Vt

∂	2
(122)

implying

Vt (	) = κe2t

√
4πωt

∫ ∞

−∞
dl ′V0(	

′)e−κ2(	−	′)2/4ωt . (123)

We shall be able to establish this explicitly from the generalized
flow equation for the two-body interaction if one regards V as a
local (delta function) contribution to U . Following the method
outlined in section 2, we split the Hamiltonian into a free part
H0,

H0 = �

2

∫
dx (∇	)2 = �

8π2

∫ 

dq q2|	̃(q)|2 (124)

where 	̃(q) is the Fourier transform of 	(x), and a
perturbative part H1 = HNL − H0 which contains both
the local and non-local contributions of the binding potential
functional. The fluctuating interfacial height field is divided
into 	(x) = 	<(x) + 	>(x), where 	<(x) accounts for large-
scale fluctuations with wavenumbers 0 < q < /b, and b
being the rescaling factor of the RG. The fast modes 	>(x)
account for the large-wavenumber fluctuations (/b < q <

) which are integrated out in each RG step. With this choice,
the free part separates into two parts H0[	] = H0[	<]+H0[	>],
so the Hamiltonian can be written as

HNL[	] = H0[	<] + H0[	>] + H1[	< + 	>]. (125)

The renormalized Hamiltonian is obtained by integrating
out the small-scale fluctuations 	> in the Boltzmann factor
associated with the interfacial Hamiltonian:

e−H̄ ′
NL[	<] ∝ e−H0[	<]〈e−H1[	<+	>]〉> (126)

where 〈· · ·〉> represents an average over small-scale fluctua-
tions 	> weighted by a Boltzmann factor exp(−H0[	>]). As-
suming that the perturbative part H1 is small in some sense, we
may approximate:

〈exp (−H1[	< + 	>])〉> ≈ exp (− 〈H1[	< + 	>]〉>) (127)

which corresponds to keep only the first term in the cumulant
expansion of the left-hand side of (127). In this linear
approach, the new Hamiltonian has the form:

H̄ ′
NL[	<] = H0[	<] + 〈H1[	< + 	>]〉> (128)

showing that the local and non-local terms of the interfacial
Hamiltonian renormalize independently. The last term of (128)
corresponds to the renormalized perturbative part of the
potential. The final step of the renormalization group is
to rescale the coordinate x and the large-scale fluctuating
contribution to the interfacial height field 	< according to:

x → x′ = x/b

	<(x) → 	′(x′) = 	<(x = x′b)/bζ
(129)

where the roughness exponent ζ = (3 − d)/2 is zero for the
present three-dimensional case. Regarding the non-local part
of the Hamiltonian, the special form of U , which depends
on 	(x1) and 	(x2) via their mean value, makes it possible
to obtain a recursion relationship for the two-body interaction.
The new non-local interaction can be written as

�W ′
NL[	<] =

∫ ∫
dx1 dx2

〈
U(x12; 	̄< + 	̄>)

〉
>
. (130)

As with the local contribution, this expression defines a new
two-body interaction Ū ′(x, 	̄<) which can be obtained from U
as:

Ū ′(x, 	̄<) =
〈
exp

(
	̄>

∂

∂	̄<

)〉

>

U(x, 	̄<) (131)

where 	̄< = (	<(x1) + 	<(x2))/2 and 	̄> = (	>(x1) +
	>(x2))/2. Owing to the Gaussian character of the
weight factor exp(−H0(	>)), the average over the short-scale
fluctuations can be easily calculated as

Ū ′(x, 	̄<) = exp

[
ωξ 2

β

2

(
t +

∫ 1

1/b
du J0(ux)

)
∂2

∂	̄<

]

U(x, 	̄<)

(132)

where J0 is a Bessel function of first kind. In the final step,
we perform the coordinate and 	< rescaling (129), so the
renormalized two-body interaction U ′(x ′, 	′) is:

U ′(x ′, 	̄′) = b4Ū ′(x = x ′b, 	̄′ = 	̄). (133)

Note that the renormalized two-body interaction remains a
function of the arithmetic mean interfacial heights.

If we take b = eδt and consider the limit δt → 0,
we obtain the flow equation for the renormalized two-body
interaction Ut(x, 	) up to the scale et as:

∂Ut

∂ t
= 4Ut + x

∂Ut

∂x
+ ωξ 2

β

(
1 + J0(x)

2

)
∂2Ut

∂	̄2
. (134)

This flow equation is solved by:

Ut(x, 	) = κe4t

√
4πω�(x, t)

∫
d	′ U0(xet; 	′)e−κ2(	−	′)2/4ω�(x,t)

(135)
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where

�(x, t) =
∫ xet

x
dz

1 + J0(z)

2z
(136)

controls the width of the Gaussian convolution. As remarked
earlier, the renormalized local potential Vt(	) given by (123)
also emerges from (136) if one regards V as a local (delta
function) contribution to U .

The two remaining ingredients in the RG analysis are
the matching condition and approximate handling of the hard-
wall constraint. We use the simplest choice of matching
procedure and integrate over the two-body interaction in order
to construct a NL binding potential function

W NL
t (	) = Vt(	)+�W NL

t (	) (137)

where

�W NL
t (	) ≡

∫
dx Ut(x; 	). (138)

The flow is then stopped when the curvature verifies W ′′
t (	

∗) =
�2, at 	∗ (the minimum of Wt (	)). A more refined
version of this would be to calculate the renormalized
direct correlation function, defined as the second-functional
derivative of the renormalized Hamiltonian, analogous to (88).
The renormalized true correlation length could then be
determined by locating the zero of its Fourier transform in the
complex plane. The RG flow is then stopped when this is
of order −1. This procedure distinguishes between the true
correlation length and a length defined via the curvature of
the potential (137) but does not influence the final predictions
concerning the order of the phase transition.

There is some freedom of choice into how one
incorporates the hard-wall, or rather, soft-wall restriction into
the linear RG scheme. The most natural is to write

V0(	) = V (	)�(	) (139)

and

U0(x; 	) = U(x; 	)�(	)+ c

b1
U(x; 0)�(−	) (140)

for the bare local and non-local contributions, respectively.
This treats the soft-wall non-locally and is consistent with
the non-local nature of the higher-order diagrams �n+1

n , with
n = 2, 3, . . ., in the NL binding potential functional W [	]
which sum to give the hard-wall restriction. Alternatively, one
could omit the second term in (140) and add a contribution
c�(−	) to (139). This treats the soft-wall contribution entirely
locally, in the same fashion as Fisher and Huse [3]. However,
these concerns are not of central importance for a number of
reasons. Firstly, they play no part in regime I (0 < ω < 1/2),
where the short-distance behaviour of the local and non-local
contributions to the binding potential are unimportant. If a
stiffness-instability does not occur in this regime, it certainly
does not occur when ω > 1/2. Secondly, even when ω >

1/2, it transpires that the direct contribution to the repulsion,
determined by the renormalization of the first term in (140), is
greater than the contribution arising from the renormalization
of the soft-wall (∝c). This is true regardless of how we treat
the soft-wall repulsion (locally or non-locally) in the linear RG

analysis. It is possible that, in the strongest fluctuation regime
(ω > 2), the linear RG predictions depend on the local or
non-local treatment of the soft-wall. However, this regime is,
strictly speaking, beyond the reach of the linear RG and will
not be considered.

5.2. The order of the phase transition

The integrated RG flow equations allow us to draw several
conclusions. We focus initially on the simplest regime ω <

1/2, where the soft-wall term ∝c can be dropped. As we shall
soon demonstrate, most of our remarks remain valid for larger
values of ω also.

5.2.1. Absence of a stiffness-instability. Firstly and
most importantly, the two-body potential Ut (x; 	) and the
corresponding NL contribution to the binding potential
function W NL

t (	) are always positive and hence represent
a repulsive interfacial interaction with the wall. The bare
critical wetting transition therefore cannot be fluctuation-
induced first-order since this relies on the next-to-leading-
order contribution to the renormalized potential function Wt (	)

becoming attractive. As remarked earlier, the FJ approximation
to the bare interaction, UFJ(x; 	) ≈ b1e−2κ	(1−κ	(∇	)2)δ(x),
is only valid for κ	(∇	)2 � 1 and crucially gets the sign of the
interaction wrong for larger wavevectors.

5.2.2. Weakened interfacial repulsion. Next, note that the
width of the Gaussian determining the renormalized potential
Ut(x; 	) depends on the distance x and is determined by the
function �(x, t). Consider first the renormalization of the
central value of the two-body potential. In the limit x → 0,
we have

�(0+, t) = t (141)

leading to

Ut (0; 	) = κe4t

√
4πωt

∫
d	′U0(0; 	′)e−κ2(	−	′)2/4ωt . (142)

The width of this convolution is identical to that appearing in
the Fisher–Huse analysis describing the evolution of the local
contribution. For fixed t , the function �(x, t) is bounded from
above by t . Therefore, if we ignore the x dependence of this
function and replace �(x, t) in (135) with t for all x , we
overestimate the extent of the renormalization. In this case,
we can integrate over the x coordinate in (138) and obtain the
upper bound

�W NL
t (	) < W rep

t (	;ω) (143)

where recall W rep
t (	;ω) is given by (21). Thus, the

renormalized repulsion is smaller in the NL theory than in
the CW theory. This means that the wetting film is thinner
and also that the parallel correlation length is smaller than the
corresponding predictions of the CW theory.
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5.2.3. Mean-field as a lower bound. In the limit of large
separation x , the renormalization of the two-body potential is
controlled by

�(∞, t) = t

2
. (144)

Thus, we can anticipate that, by replacing�(x, t) in (135) with
t/2, we underestimate the extent of the renormalization for all
finite x . This leads to the lower bound

�W NL
t (	) > W rep

t (	;ω/2) (145)

where the RHS is the CW result for the repulsion evaluated at
half the value of the wetting parameter. In fact, this intuition
can be rigorised by noting that �(x, t) is bounded from below
by t/2 − 0.2 for xet > 1. The right-hand side of (145) is
readily evaluated and, indeed, can be read directly from the
analysis of Fisher and Huse. We find

W rep
t (	;ω/2) ≈ b1e2t+2ωt−2κ	 (146)

which is valid for ω < 1. Notice that the condition on
the bound now is not ω < 1/2 because the bound itself is
determined by half the value of the wetting parameter. The
demarkation into regimes I (0 < ω < 1/2), II (1/2 < ω < 2)
and III (ω > 2) is appropriate for the asymptotic critical
behaviour, but cross-over effects are not so clear-cut.

This lower bound on the repulsion has a remarkable
physical interpretation since it leads to mean-field-like
criticality even thought the value of the wetting parameter ω
is non-zero. This follows from using (146) together with the
leading-order term Vt(	) ≈ ae2t+ωt−κ	 (which is valid for ω <
2). The usual matching condition then leads only to mean-field
critical behaviour described by the critical exponents αs = 0
and ν‖ = 1. Non-universality does not emerge in this lower
bound even though the renormalized attraction and repulsion
are both altered by fluctuation effects. We can therefore be
certain that observables such as the equilibrium film thickness,
the excess free-energy, and the parallel correlation length take
values which all lie between the predictions of mean-field
theory and the non-universality of the CW model.

5.2.4. Non-universality. A more telling lower bound can
be obtained by considering the properties of �(x, t) in
more detail. The width of the Gaussian determining the
renormalized two-body interaction depends on the distance x .
Equivalently, one may define a function ω(x) by

ω(x) = ω
�(xe−t∗

, t∗)
t∗ (147)

which allows us to write the renormalized NL binding potential
function as

�W NL
t∗ (	) = κe2t∗

∫ ∫
dx d	′U0(x; 	′)

e−κ2(	−	′)2/4ω(x)t∗

√
4πω(x)t∗ .

(148)
Thus, ω(x) clearly interpolates between the upper and lower
bounds controlling the renormalization at x = 0 and x =

∞, respectively. Provided x > 1/ and xe−t∗ � 1, a
straightforward calculation shows

ω(x) ≈ ω − ω

2

lnx

t∗ + · · · . (149)

It is this value of the wetting parameter which determines the
width of the Gaussian convolution with the bare two-body
interaction for fixed x . Since at the matching point et∗ ≈ ξ‖
(by definition), we can write

ω(x) ≈ ω − ω
ln

√
x

lnξ‖
+ · · · . (150)

This is strikingly similar to the formula for the effective value
of the wetting parameter ωeff which emerged in the Ginzburg
criterion.

Now, note that U0(x; 	′) ≈ e−2κ	′
√

1+(x/	′)2 , implying the
bare two-body interaction is negligible compared to its central
value for all separations x � 	′. Therefore, if we replace ω(x)
with ω(λ), where the distance λ scales faster than 	′, then we
will certainly be underestimating the renormalized repulsion.
This can be achieved by writing λ ∼ (	′)δ with exponent
δ > 1. In addition, since, at matching, the saddle point value
of 	′ is less than the equilibrium film thickness 〈	〉, we can
strength the lower bound to

�W NL
t∗ (	) > W rep

t∗ (	;ωδ) (151)

where

ωδ = ω − ωδ
ln

√
〈	〉

lnξ‖
+ · · · (152)

and is valid for δ > 1 and large values of 〈	〉 and ξ‖. Now,
as T → Tw, both 〈	〉 and ξ‖ diverge but always such that
ξ‖ � 〈	〉. Thus, as we approach the (reduced) asymptotic
critical regime, ωδ → ω. Taken together with the upper
bound, this shows that the asymptotic critical behaviour is
non-universal and its leading order exactly the same as that
predicted by the original CW model.

5.2.5. The effective value of the wetting parameter. The
above lower bound fails for δ = 1, since we can no longer be
sure we are underestimating the fluctuation effects by replacing
x with 〈	〉 in (150). In this case, we identify ωδ ≡ ω(〈	〉)
where, from (150),

ω(〈	〉) = ω − ω
ln

√
〈	〉

lnξ‖
· · · . (153)

It is notable that this is the same as the expression for the
effective value of the wetting parameter ωeff determining the
reduced Ginzburg criterion, except that all length-scales now
take their equilibrium as opposed to their mean-field values. It
follows that the renormalized repulsion within the NL theory
behaves as

�W NL
t∗ (	) ≈ W rep

t∗ (	;ωeff) (154)

at least for small values ofω, typical of regime I. Consequently,
the effective wetting parameter ωeff also helps quantify the
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slower approach to the asymptotic critical regime arising from
the weaker renormalized repulsion.

It is notable that, in regime I (and also in regime II), the
wetting temperature is not altered by fluctuations and occurs
when a = 0. Thus, if we sit exactly at the critical wetting
temperature Tw and approach the transition along the critical
isotherm h → 0−, the only contributions to the binding
potential are a trivial local term h̄	 and the non-local repulsion.
The local term renormalizes in a simple manner h̄	 → h̄	e2t

and does not depend on the wetting parameter. Thus, the value
of the wetting parameter measured along the critical isotherm,
which appears in thermodynamic observables, arises solely
from the non-local repulsion. This implies, for example, that
the surface magnetization contains a singular term msing

1 ≈
|h|1−1/2ν‖(ωeff) [9] and is determined by the lower (effective)
value of the wetting parameter which characterizes the weaker
repulsion of NL model. This is of direct relevance to the
interpretation of the Ising model simulations which extracted
critical singularities along this thermodynamic path.

The above arguments rely on the renormalization of the
direct (local) attraction and direct (non-local) repulsion and
ignores any contribution from the hard-wall proportional to c
in (140). However, much of the above analysis goes through
even when ω > 1/2 where the hard-wall term is potentially
important. Here, we address three pertinent questions: (A) is
a stiffness-instability possible?, (B) is the repulsion weaker
than predicted by CW theory?, and (C) is the cross-over to
the (reduced) asymptotic critical regime controlled by a lower
(effective) value of the wetting parameter?

The answer to the first question is certainly ‘no’. Both
the direct and hard-wall contributions to�WNL(	) are positive,
representing repulsive interactions. Hence, the wetting
transition cannot be driven first-order in any regime. The
answer to the second question is certainly ‘yes’. The
bound (143) applies equally to the direct and hard-wall
contributions no matter what fluctuation regime we are in—
all contributions to the renormalized repulsion are weaker in
the NL theory compared to the CW model. There is, however,
a subtle difference in the RG treatment of regime II in the CW
and NL models.

Recall that, in the treatment of the CW model, the
contributions from the direct and hard-wall repulsions are
similar for ω > 1/2. This is because the value of 	′ which
maximizes the integrand in (21) occurs when 	′ = 0, which
is no longer the case in the NL theory due to the explicit
dependence on position x . That is, for fixed x , we must
consider what value of 	′ maximizes the integrand in (148). A
simple calculation shows that this is determined approximately
from the solution of

2ω	2

(	− 	′)2
− x2

4	′2 = 1 (155)

where we have assumed that ω � 1/2. For x � 	, this implies
	′ ≈ √

2ω − 1(x/2), while, for x � 	, we have 	′ ≈ 	. In
other words, the renormalized direct repulsion is determined
by the short-distance behaviour, only exactly at x = 0. For
all finite x , the renormalized potential Ut (x; 	) is determined
by fluctuations which do not take the interface all the way to

the wall. The renormalized direct repulsion is greater than the
renormalized hard-wall repulsion even for ω > 1/2.

The last question is the most difficult one to answer.
Provided ω < 1, the lower bound on repulsion is still given
by the expression (146). The hard-wall only changes this
lower bound for ω > 1. This is not something that need
concern us for Ising-like systems where the physical value
of ω ≈ 0.8. Thus, the critical behaviour must lie between
the predictions of mean-field theory and the CW model, even
allowing for a hard-wall term. The second-lower bound (151)
also applies to both direct and hard-wall contributions and
shows that the asymptotic critical regimes fall into the same
categories predicted by Brezin et al [2]. What is more
difficult to do, however, is to quantify the slower approach
to the critical regime induced by non-locality. There are
several reason for this. Firstly, even if the ultimate asymptotic
critical behaviour belongs to regime II (1/2 < ω < 2), the
effective value of the wetting parameter for a given wetting
film thickness might be less than 1/2. Indeed, our numerical
results obtained from simulations of the NL model reveal
precisely this. Secondly, we really do not know how reliable
the linear RG is for assessing such a difficult question as the
approach to non-universality in a regime where the hard-wall is
important. Fortunately, our numerical results based on Monte
Carlo simulation of the NL model reveal that the cross-over
behaviour is rather well described by an effective value of the
wetting parameter which emerges directly from the Ginzburg
criterion and the second-lower bound obtained above, even for
ω = 0.8. We finish this section by showing how such an
effective wetting parameter emerges from a simplified version
of the RG.

5.3. Interpretation as an effective cut-off

There is an alternative and rather simple way of interpreting
the impact of non-locality on fluctuation effects. Recall that
the CW approximation to the two-body interfacial repulsion,
SCW(q) = 1, is only valid for wavenumbers q < 1/ξNL.
At higher wavenumbers, the repulsion is strongly suppressed.
This suggests that the binding potential functional WNL[	]
in (38) can be approximated by the local expression

WNL[	] ≈ a
∫ 

dx e−κ	 + b1

∫ NL

dx e−2κ	 + · · · (156)

where, as indicated, we have introduced an effective
momentum cut-off NL for the repulsion. This is similar to
the discussion concerning the modification to the Ginzburg
criterion where we set NL ∼ 1/ξ̂NL. However, this procedure
is not appropriate here since we do not wish to assume any
mean-field-like behaviour. Instead, we can use NL ≈ √

κ/	0

where, following (43) and (47), 	0 = ∫
dx 	(x)/A is the

mean interfacial height. We also impose the same wavevector
restriction q < NL on the approximate treatment of the
hard-wall. The presence of a smoothed interfacial height 	0

in the binding potential functional is reminiscent of weighted
densities appearing in non-local density-functional theories of
confined fluids [52], and is the simplest means of adapting the
CW model to allow for the dampening effect of fluctuations
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on the repulsion. This approximate approach represents the
limit to which one may apply local interfacial models to the
three-dimensional critical wetting problem. The cut-off for the
attractive term remains  ≈ κ .

Apart from the change in the cut-off, expression (156) has
the same form as the original CW theory. It is straightforward
to modify the linear RG analysis of Fisher and Huse [3]
to account for two distinct cut-offs by curtailing the RG
flow of the repulsion before that of the attraction. At the
matching point, this identifies 	0 = 〈	〉 and shows that the
renormalization of the repulsion is determined by a reduced
value of the wetting parameter. We omit these details because
the analysis is even simpler to understand from the perspective
of the RG scheme used by Brezin et al [2]. In their approach,
one constructs an effective potential Weff(	) by convoluting
each term in the bare potential with a Gaussian

Weff(	) = 1√
2πξ⊥

∫ ∞

−∞
d	′W0(	

′)e−(	−	′)2/2ξ 2
⊥ (157)

where
κ2ξ 2

⊥ = ω ln(1 +2ξ 2
‖ ) (158)

identifies the roughness. Then, one analyses the effective
potential in a self-consistent manner and determines the
correlation length according to ξ−2

‖ = W ′′
eff(〈	〉)/�.

For the binding potential functional (156), one sees
immediately that the repulsive term renormalizes similarly
to (157) but with ξ⊥ replaced with a smaller width w⊥,
satisfying

κ2w2
⊥ = ω ln(1 +2

NLξ
2
‖ ) (159)

where NL ≈ √
κ/〈	〉. This is equivalent to saying that

both the direct and hard-wall repulsions are determined by an
effective wetting parameter

ωeff = ω
ln(1 +2

NLξ
2
‖ )

ln(1 +2ξ 2
‖ )
. (160)

This is the same as the equation emerging from the Ginzburg
criterion analysis, (116), except all the quantities now take
their equilibrium values as opposed to their mean-field values.
Provided κ〈	〉 � 1, we may express this solely in terms of the
wetting film thickness, which leads us to

ωeff = ω − c(ω)
ln κ〈	〉
κ〈	〉 + · · · (161)

where the dimensionless coefficient c depends on the regime.
For 0 < ω < 1/2, we have c(ω) = ω(1 + 2ω)/2, while, for
ω > 1/2, we find c(ω) = √

2ω3. Thus, the effective value only
approaches its true asymptotic value very slowly as the wetting
film grows. In writing (161), we have assumed, for simplicity,
that ωeff also falls into the same regime as ω. This may not be
the case for thin wetting layers, or near a regime borderline.

If one wished, one could include a position-dependent
stiffness in the above (amended) local interfacial description.
Treated correctly, such a term no longer alters the order
of the phase transition. The FJ model is equivalent to
the approximation SFJ(q) ≈ 1 − q2ξ 2

NL and is only valid

for sufficiently long wavelengths, q < NL. Thus,
the troublesome next-to-leading-order position-dependent
stiffness term appearing in the FJ Hamiltonian (25) should be
written

− κb1

∫ NL

dx 	e−2κ	(∇	)2 (162)

and is subject necessarily to the same wavevector restriction
imposed on the direct repulsion in the local binding potential
function (156). The mixing of the flow equations is now
equivalent to a modified bare binding potential given by

W̄0(	) = āe−κ	 + b1(1 − ωξ	2
NL)e

−2κ	. (163)

If the momentum cut-off were taken to be  ∼ κ , then
we would indeed have a stiffness-instability as predicted by
Fisher and Jin. However, the corrected value of the cut-
off cancels the problematic polynomial dependence on the
film thickness. Consequently, there is no change in the
sign of the next-to-leading-order exponential and, therefore,
no stiffness-instability. A very similar flaw is present in
generalizations of the FJ model which allow for coupling
between interfacial fluctuations and those in the order-
parameter near the wall [20, 21].

6. Numerical simulation of the interfacial models

In order to check the above predictions, we perform Monte
Carlo simulations of discretized versions of the CW, FJ and NL
Hamiltonians. Our approach follows closely that of Gompper
and Kroll [42], whose simulations of the CW Hamiltonian
confirmed convincingly the RG predictions of non-universality
for this model. Thus, following [42], we discretize space by
introducing an L × L square lattice of spacing σ with periodic
boundary conditions in the directions parallel to the surface,
but treating the interfacial position height as a continuous
variable. The length-scale σ determines the value of the
high momentum cut-off  ≈ π/σ , and is taken to be an
appropriate multiple of the bulk correlation length ξβ . In
each Monte Carlo step, we choose a lattice site i at random
and increment the interfacial height 	i ≡ 	(xi) by a random
number which follows a uniform probability distribution on the
interval [−�	,�	], and use the usual Metropolis algorithm
to accept or reject the new configuration [53]. The parameter
�	 is chosen so that approximately 40%–50% of the Monte
Carlo attempted configurations are accepted. In order to assess
finite-size effects, we use L = 101 and 201. Averages are
evaluated over 106/107 Monte Carlo steps per site, after an
equilibration period of about 105/106 Monte Carlo steps per
site for L = 101/201.

Our simulations of the interfacial Hamiltonians are
performed along the mean-field critical wetting isotherm, for
which the coefficients in the binding potential (functional)
satisfy a = b2 = 0, and the bulk ordering field h̄ → 0. For this
choice of parameters, and written in terms of ω, the continuum
CW model (5) is given explicitly by

HCW[	] =
∫

dx
{

kBT κ2

8πω
(∇	)2 + h̄	+ b1e−2κ	

}
(164)
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with its discretized version

H ∗
CW({	i}) = κ2kBT

16πω

∑

i,n

(	i − 	i+n)
2

+ σ 2
∑

i

(
h̄	i + b1e−2κ	i

)
(165)

where the sum over n is restricted to the nearest neighbours of
the site i , denoted by i +n. In this discretization, we have used
the standard approximation (∇	(xi))

2 ≈ 1
2σ 2

∑
n(	i − 	i+n)

2

for the square-gradient term.
The continuum and discretized versions of the FJ model

are

HFJ[	] =
∫

dx

{(
kBT κ2

8πω
− b1κ	e

−2κ	

)

× (∇	)2 + h̄	+ b1e−2κ	

}

(166)

and

H ∗
FJ({	i}) =

∑

i,n

[
κ2kBT

16πω
− κ	ib1e−2κ	i

]
(	i − 	i+n)

2

+ σ 2
∑

i

(
h̄	i + b1e−2κ	i

)
(167)

both of which contain a position-dependent stiffness-
coefficient.

Finally, the continuum and discretized versions of the NL
model are

HNL[	] =
∫

dx
{

kBT κ2

8πω
(∇	)2 + h̄	

}

+
∫ ∫

dx1 dx2U
(
x12; 	̄

)
(168)

and

H ∗
NL({	i}) = κ2kBT

16πω

∑

i,n

(	i − 	i+n)
2

+ σ 2
∑

i

(
h̄	i

)+ σ 4
∑

i, j

U
(
xi j; 	̄

)
(169)

where the mean-geometric heights are 	̄ = (	(x1) + 	(x2))/2
and 	̄ = (	i+	 j )/2 for the continuum and discretized versions,
respectively. The two-body interaction U(x; 	) is calculated
by numerical integration of (42), and is set to zero for x >

Rcut-off = 4σ , which is appropriate provided κ〈	〉 < 10.
Before we discuss the simulation results, a few remarks

are in order. In writing the NL model, we have made
the usual square-gradient approximation to the full-area term√

1 + (∇	)2 ≈ 1 + (∇	)2/2, since this approximation is
also inherent in the CW and FJ models. However, we have
also performed simulations of the full-area description of the
NL model, which does not assume the gradient expansion.
We found that the larger the value of the discretization
parameter σ , the closer the simulation results obtained between
the square-gradient and the full-area versions of the NL
model. This is entirely in keeping with elementary physical
considerations, since the typical value of the interfacial height
gradient is of order |∇	| ∼ ξβ/σ , implying that we can safely
neglect terms O((∇	)4) and higher-order terms for large κσ .
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Figure 5. Plot of the mean wetting layer thickness 〈	〉, measured in
units of the bulk correlation length, and surface magnetization
operator�m1 = 〈e−κ	〉 versus reduced (dimensionless) bulk field h
obtained by computer simulations of the CW FJ, and NL models for
ω = 0.8, a = b2 = 0, and b1/κ

2kBT = 2.5. For the FJ model, the
wetting layer thickness saturates, consistent with a first-order phase
transition, while both the CW and NL models give critical wetting.
The approach to the asymptotic critical regime for the NL model is
considerably slower than for the CW model.

For the choice σ = 3.1623κ−1, the numerical results of the
two models are similar and only results for the square-gradient
approximation (169) are reported. We also choose ω = 0.8 and
b1 = 2.5κ2kBT , which are reasonable Ising-like parameters.
We anticipate the critical wetting phase boundary remains
mean-field (a = 0) for the CW and NL theories [3], whilst the
FJ exhibits a first-order transition at a higher temperature [16].

Figure 5 describes the behaviour of the mean wetting
layer thickness 〈l〉 and the surface magnetization-like operator
�m1 = 〈e−κl〉 along the mean-field critical wetting isotherm
a = 0, h̄ → 0. The FJ model clearly describes partial wetting
in this limit, consistent with a fluctuation-induced first-order
transition. On the other hand, the CW and NL models are
qualitatively similar, showing continuous wetting. The growth
of the film thickness conforms to the anticipated logarithmic
divergence κ〈l〉 ∼ − ln h̄ even for moderately thick wetting
layers. However, the surface magnetization shows a much
larger preasymptotic critical regime. The asymptotic non-
universal behaviour �m1 ∼ h̄1−1/2ν‖ , with ν‖(ω) = (

√
2 −√

ω)−2 is not observed even for thick wetting layers, κ〈l〉 ∼
10, and very large lattice sizes κL ∼ 300. This is strongly
suggesting that, unless Ising model simulations of wetting
are conducted in very large systems, significant deviations
from mean-field behaviour will not be observed. Nevertheless,
mean-field theory will ultimately breakdown.
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Figure 6. Effective value of the wetting parameter as a function of
the equilibrium wetting thickness κ〈	〉. Simulations of the
discretized local (squares) and non-local (circles) interfacial models
were performed on an L × L grid (of unit length σ ). The dashed
lines are predictions of the continuum approximation (170) for
different values of the momentum cut-off. The value of ωfit
obtained from Ising model simulations [13] is also shown
(square).

In figure 6, we plot the effective value of the wetting
parameter ωeff versus the film thickness κ〈	〉 as obtained
from the simulation data of the CW and NL models. In the
simulation studies of the interfacial models, ωeff has been
extracted from the singularity of the surface magnetization
�m1 ≈ h̄1−1/2ν‖(ωeff), along the critical isotherm. This is more
difficult for the Ising model, and we have used the estimate
taken from the surface susceptibility critical amplitude [13].
As can be seen, the NL theory is in better agreement with
the Ising model simulation result due to the slower cross-
over. In addition to this, an intriguing feature of the simulation
results of the NL model is the non-monotonic behaviour of
ωeff with film thickness and the presence of a minimum when
κ	 ≈ 5. Both these features are consistent with the theoretical
expression (160), obtained from the RG and Ginzburg criterion
analysis of the continuum NL Hamiltonian. Substituting
NL ≈ √

κ/〈	〉 and κ	 ≈ √
2ω ln(2ξ 2

‖ ) leads to the
approximate expression for the thickness dependence

ωeff(	) ≈ ω
ln(1 + (κ/	2)eκ	/

√
2ω)

ln(1 + eκ	/
√

2ω)
. (170)

Numerical plots of this result for different values of the
momentum cut-off  are shown as dashed lines in figure 6.
These are reasonably close to the simulation findings, being
substantially lower than the asymptotic value ω = 0.8, and
also show the presence of a minimum value of approximately
0.3 when the film thickness is approximately 5 bulk correlation
lengths. The non-monotonic behaviour of ωeff can also be
inferred from the change of curvature in the plot of �m1

versus h̄, shown in figure 5. Unfortunately, in the original
Ising simulation studies, the regime where ωeff increases with
decreasing film thickness corresponds to wetting layers less

than 1 or 2 lattice spacings, for which a continuum description
is doubtful. However, this limitation can be overcome in
future simulations at temperatures closer to Tc, where the bulk
correlation length is much larger.

7. Conclusions

In this paper, we have used a non-local interfacial Hamiltonian
to revisit some problems in the theory of three-dimensional
short-ranged wetting. The NL model contains an additional
diverging length-scale, ξNL, not present in the basic capillary-
wave description of wetting, which, we believe, is the
likely reason why Ising model simulations did not reveal the
anticipated non-universality. As stressed at the beginning of
our paper, the dampening effect of the two-body interfacial
repulsion on critical singularities can already be seen in the
mean-field correlations calculated for the LGW model and
leads directly to the reduction in the size of the critical regime
at critical wetting. If this is present in the LGW model, it is
highly likely it is also present in the Ising model.

Of course, we have not solved either the full three-
dimensional LGW or an Ising model description of wetting.
The present continuum NL interfacial model is only valid for
thick wetting films much greater than the bulk correlation
length. It gives no description of physics related to volume
exclusion and lattice effects, which would lead to layering
phenomena and the roughening transition, for example. At
the very least, we believe the NL model does two things:
(1) it provides a better understanding of the limitations of
the original CW and FJ models of wetting, and highlights
the importance of two-body interfacial interactions, (2) in a
wider context still, the diagrammatic expansion of the binding
potential functional W [	,ψ] provides a systematic basis for
understanding how wetting films and liquid drops behave near
shaped substrates.

We do not know if the present revision in the
phenomenology of short-ranged wetting has implications for
systems with long-ranged fluid–fluid forces. Henderson’s exact
sum-rule for G2(0, 0) is valid for quite arbitrary choices of
fluid–fluid intermolecular potential, and analogous questions
exists about how this is satisfied exactly by an interfacial
Hamiltonian. In addition, recent density-matrix RG studies
of critical wetting in a two-dimensional Ising model with
marginal long-ranged substrate interactions did not reveal
the anticipated non-universality predicted on the basis of the
standard interfacial Hamiltonian [54]. Perhaps, this points
to the presence of additional length-scales for wetting in
systems with long-ranged forces. Finally, returning to the
case of short-ranged forces, we have not yet been able to
generalize the nonlinear RG analysis to account for two-body
repulsive interactions. Although this would be welcome, it is
overoptimistic to think this would give an analytic insight into
the slower approach to the critical regime. Rather, it would be
interesting to understand if non-locality alters the fixed-point
analysis pertinent to the strong-fluctuation regime of critical
wetting away from d = 3, and also the bifurcation mechanism
as one approaches the upper critical dimension [41].
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